Maximum Mean Discrepancy for Class Ratio Estimation: Convergence Bounds and Kernel Selection
نویسندگان
چکیده
First, we theoretically analyze the MMD-based estimates. Our analysis establishes that, under some mild conditions, the estimate is statistically consistent. More importantly, it provides an upper bound on the error in the estimate in terms of intuitive geometric quantities like class separation and data spread. Next, we use the insights obtained from the theoretical analysis, to propose a novel convex formulation that automatically learns the kernel to be employed in the MMD-based estimation. We design an efficient cutting plane algorithm for solving this formulation. Finally, we empirically compare our estimator with several existing methods, and show significantly improved performance under varying datasets, class ratios, and training sizes.
منابع مشابه
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels
Maximum Mean Discrepancy (MMD) is a distance on the space of probability measures which has found numerous applications in machine learning and nonparametric testing. This distance is based on the notion of embedding probabilities in a reproducing kernel Hilbert space. In this paper, we present the first known lower bounds for the estimation of MMD based on finite samples. Our lower bounds hold...
متن کاملCopula-based Kernel Dependency Measures
The paper presents a new copula based method for measuring dependence between random variables. Our approach extends the Maximum Mean Discrepancy to the copula of the joint distribution. We prove that this approach has several advantageous properties. Similarly to Shannon mutual information, the proposed dependence measure is invariant to any strictly increasing transformation of the marginal v...
متن کاملConvergence Rates of Parameter Estimation for Some Weakly Identifiable Finite Mixtures by Nhat Ho
We establish minimax lower bounds and maximum likelihood convergence rates of parameter estimation for mean-covariance multivariate Gaussian mixtures, shape-rate Gamma mixtures, and some variants of finite mixture models, including the setting where the number of mixing components is bounded but unknown. These models belong to what we call ”weakly identifiable” classes, which exhibit specific i...
متن کاملGeneral classes of performance lower bounds for parameter estimation: part II: Bayesian bounds
In this paper, a new class of Bayesian lower bounds is proposed. Derivation of the proposed class is performed via projection of each entry of the vector-function to be estimated on a closed Hilbert subspace of L2. This Hilbert subspace contains linear transformations of elements in the domain of an integral transform, applied on functions used for computation of bounds in the Weiss-Weinstein c...
متن کاملPosterior Convergence Rates of Dirichlet Mixtures at Smooth Densities
We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...
متن کامل